miércoles, 1 de mayo de 2013


MES 1:        ANALIZA Y RESUELVE SITUACIONES BÁSICAS DE PROBABILIDAD


 TÉRMINOS BÁSICOS DE LA TEORÍA DE CONJUNTOS
La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas relacionados con estos.


El concepto de conjunto es intuitivo y se podría definir como una "agrupación bien definida de objetos no repetidos y no ordenados"; así, se puede hablar de un conjunto de personas, ciudades, gafas, lapiceros o del conjunto de objetos que hay en un momento dado encima de una mesa. Un conjunto está bien definido si se sabe si un determinado elemento pertenece o no al conjunto. El conjunto de los bolígrafos azules está bien definido, porque a la vista de un bolígrafo se puede saber si es azul o no. El conjunto de las personas altas no está bien definido, porque a la vista de una persona, no siempre se podrá decir si es alta o no, o puede haber distintas personas, que opinen si esa persona es alta o no lo es. En el siglo XIX, según Frege, los elementos de un conjunto se definían sólo por tal o cual propiedad. Actualmente la teoría de conjuntos está bien definida por el sistema ZFC. Sin embargo, sigue siendo célebre la definición que publicó Cantor.

¿QUE ES UN CONJUNTO?

Un conjunto es la agrupación, clase, o colección de objetos o en su defecto de elementos que pertenecen y responden a la misma categoría o grupo de cosas, por eso se los puede agrupar en el mismo conjunto. Esta relación de pertenencia que se establece entre los objetos o elementos es absoluta y posiblemente discernible y observable por cualquier persona. Entre los objetos o elementos susceptibles de integrar o conformar un conjunto se cuentan por supuesto cosas físicas, como pueden ser las mesas, sillas y libros, pero también por entes abstractos como números o letras.

Los conjuntos son materia de estudio de las matemáticas.



CLASES DE CONJUNTOS

Conjunto Finito: Es el conjunto al que se le puede determinar su cardinalidad o puede llegar a contar su ultimo elemento.

Ejemplo:

M= {*/x es divisor de 24}
M= {1,2,3,4,6,8,12,24}

Conjunto Infinito: Es el conjunto que, por tener muchisimos elementos, no se le puede llegar a contar su ultimo elemento.

Ejemplo:

A= {*/x sea grano de sal}

Conjunto Vacio: Es el conjunto cuya cardinalidad es cero ya que carece de elementos. El simbolo del conjunto vacio O o { }.

Ejemplo:

C={*/x sea habitantes del sol}

Conjunto Unitario: Es el conjunto que solo tiene un elemento. Su cardinalidad es uno (1).

Ejemplo:

D={*/x sea vocal de la palabra "pez"}
DETERMINACIÓN DE UN CONJUNTO

Hay tres  formas de determinar conjuntos.

Forma Enumerativa, por Extension ó Forma Tabular:
La representacion enumerativa de un conjunto consiste en escribir uno a uno los elementos que conforman un conjunto dado.

Ejemplo:
A = { a, e, i, o, u }
B = { 0, 2, 4, 6, 8 }
C = { c,o , n, j, u, t, s } En un conjunto determinado por extensión no se repite un mismo elemento.

Por Comprension ó Forma Descriptiva:
Esta forma consiste en determinar la caracteristica comun entre los elementos que posee un conjunto.

Ejemplo:
A = { x/x es una vocal }
B = { x/x es un número par menor que 10 }
C = { x/x es una letra de la palabra conjuntos }

Forma Grafica:
En esta forma se representa mediante una superficie limitada por una línea. En su interior se colocan los elementos del conjunto. Cada porción del plano limitada se nombra con una letra mayúscula.

Ejemplo:



OPERACIONES CON CONJUNTOS
UNION DE CONJUNTOS:
La unión de los conjuntos A y B es el conjunto formado por todos los elementos que pertenecen a A o a B o a ambos. Se denota: A U B. La unión de conjuntos se define como:
A U B = {x / x € A o x € B}

EJEMPLOS:

Dados los conjuntos: A = { 0, 1, 2, 3, 4, 5 }, B = { 0, 2, 4 } y C = { 5, 6, 8 }

        a) A U C       b) B U C


A = { 0, 1, 2, 3, 4, 5 } y C = { 5, 6, 8 }

A U C = { 0, 1, 2, 3, 4, , 6, 8 }
B = { 0, 2, 4 } y C = { 5, 6, 8 }
           B U C = { 0, 2, 4, 5, 6, 8 }         B U C = {x/x € N y x > 0 < 8 }



INTERSECCION DE CONJUNTOS: 
La interseccion es el conjunto formado por los elementos que son comunes entre dos o mas conjuntos dados. Se denota por  A  B, que se lee: A intersección B. La intersección de A y B también se puede definir:
A  B = { x / x € A y x € B }

EJEMPLOS:

Dados los conjuntos: A = { 0, 1, 2, 3, 4, 5 }, B = { 3, 5, 7 } y C = { 2, 4 }

         a) A  C         b)  B  C

A = { 0, 1, 2, 3, 4, 5 } y C = { 2, 4 }
           A  C = { 2 , 4 }
B = { 3, 5, 7 } y C = { 2, 4 }
            B C = { O }



DIFERENCIA DE CONJUNTOS:
Se denomina diferencia de dos conjuntos A y B al conjunto formado por todos los elementos de A pero que no pertenecen a B.

La diferencia se denota por: A - B que se lee: A diferencia B o A menos B. Se define la diferencia de dos conjuntos también como:
A - B = {x / x € A y x  B}

A - B

EJEMPLOS:

Dados los conjuntos: A = { a, b, c, d, e }, B = { a, e } y C = { d, f, g }

       a) A - C          b) B - C



A = { a, b, c, d, e } y C = { d, f, g }
          A - C = { a, b, c, e } 

B = { a, e } y C = { d, f, g }
            B - C = { a, e }


DIFERENCIA SIMETRICA:

El conjunto diferencia simétrica de A y B está formado por los elementos del universo que pertenecen a uno y solamente uno de ellos, es decir, que pertenecen a A , o a B , pero no a ambos:

EJEMPLO:

Sean:
U = { p , r , s , t }
A = { p , s }
B = { r , s }
Entonces: 
COMPLEMENTO DE CONJUNTOS:

Si un conjunto A es subconjunto de otro conjunto universal U, al conjunto A' formado por todos los elementos de U pero no de A, se llama complemento de A con respecto a U. Simbólicamente se expresa:


 A' = { x/x € U y x  A }

EJEMPLOS:

Sean U = { m, a, r, t, e } y A = { t, e }

Su complemento de A es: A' = { m, a, r }







CONCEPTOS BÁSICOS DE PROBABILIDAD

Experimentos deterministas
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
Ejemplo
Si dejamos caer una piedra desde una ventana sabemos, sin lugar a dudas, que la piedra bajará. Si la arrojamos hacia arriba, sabemos que subirá durante un determinado intervalo de tiempo; pero después bajará.
Experimentos aleatorios
Son aquellos en los que no se puede predecir el resultado, ya que éste depende del azar.
Ejemplos
Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz.
Si lanzamos un dado tampoco podemos determinar el resultado que vamos a obtener.
Teoría de probabilidades
La teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir en un experimento aleatorio, con el fin de cuantificar dichos resultados y saber si un suceso es más probable que otro. Con este fin, introduciremos algunas definiciones:
Suceso
Es cada uno de los resultados posibles de una experiencia aleatoria.
Al lanzar una moneda salga cara.
Al lanzar una moneda se obtenga 4.
Espacio muestral
Es el conjunto de todos los posibles resultados de una experiencia aleatoria, lo representaremos por E (o bien por la letra griega Ω).
Espacio muestral de una moneda:
E = {C, X}.
Espacio muestral de un dado:
E = {1, 2, 3, 4, 5, 6}.
Suceso aleatorio
Suceso aleatorio es cualquier subconjunto del espacio muestral.
Por ejemplo al tirar un dado un suceso sería que saliera par, otro, obtener múltiplo de 3, y otro, sacar 5.
Ejemplo
Una bolsa contiene bolas blancas y negras. Se extraen sucesivamente tres bolas. Calcular:
1. El espacio muestral.
E = {(b,b,b); (b,b,n); (b,n,b); (n,b,b); (b,n,n); (n,b,n); (n,n ,b); (n, n,n)}
2. El suceso A = {extraer tres bolas del mismo color}.
A = {(b,b,b); (n, n,n)}
3. El suceso B = {extraer al menos una bola blanca}.
B= {(b,b,b); (b,b,n); (b,n,b); (n,b,b); (b,n,n); (n,b,n); (n,n ,b)}
4. El suceso C = {extraer una sola bola negra}.
C = {(b,b,n); (b,n,b); (n,b,b)}
Tipos de sucesos

Suceso elemental
Suceso elemental es cada uno de los elementos que forman parte del espacio muestral.
Por ejemplo al tirar un dado un suceso elemental es sacar 5.
Suceso compuesto
Suceso compuesto es cualquier subconjunto del espacio muestral.
Por ejemplo al tirar un dado un suceso sería que saliera par, otro, obtener múltiplo de 3.
Suceso seguro
Suceso seguro, E, está formado por todos los posibles resultados (es decir, por el espacio muestral).
Por ejemplo al tirar un dado un dado obtener una puntuación que sea menor que 7.
Suceso imposible
Suceso imposible, es el que no tiene ningún elemento.
Por ejemplo al tirar un dado obtener una puntuación igual a 7.
Sucesos compatibles
Dos sucesos, A y B, son compatibles cuando tienen algún suceso elemental común.
Si A es sacar puntuación par al tirar un dado y B es obtener múltiplo de 3, A y B son compatibles porque el 6 es un suceso elemental común.
Sucesos incompatibles
Dos sucesos, A y B, son incompatibles cuando no tienen ningún elemento en común.
Si A es sacar puntuación par al tirar un dado y B es obtener múltiplo de 5, A y B son incompatibles.
Sucesos independientes
Dos sucesos, A y B, son independientes cuando la probabilidad de que suceda A no se ve afectada porque haya sucedido o no B.
Al lazar dos dados los resultados son independientes.
Sucesos dependientes
Dos sucesos, A y B, son dependientes cuando la probabilidad de que suceda A se ve afectada porque haya sucedido o no B.
Extraer dos cartas de una baraja, sin reposición, son sucesos dependientes.
Suceso contrario
El suceso contrario a A es otro suceso que se realiza cuando no se realiza A. Se denota por .
Son sucesos contrarios sacar par e impar al lanzar un dado
Espacio de sucesos
Espacio de sucesos, S, es el conjunto de todos los sucesos aleatorios.
Si tiramos una moneda el espacio se sucesos está formado por:
S= {, {C}, {X}, {C,X}}.
Observamos que el primer elemento es el suceso imposible y el último el suceso seguro.
Si E tiene un número finito de elementos, n, de elementos el número de sucesos de E es 2.
Una moneda E= {C, X}.
Número de sucesos = 2=4
Dos monedas E= {(C,C); (C,X); (X,C); (X,X)}.
Número de sucesos = 2=16
Un dado E = {1, 2, 3, 4, 5, 6}.
Número de sucesos = 2= 64




TECNICAS DE CONTEO

El principio fundamental en el proceso de contar ofrece un método general para contar el numero de posibles arreglos de objetos dentro de un solo conjunto o entre carios conjuntos. Las técnicas de conteo son aquellas que son usadas para enumerar eventos difíciles de cuantificar.

Si un evento A puede ocurrir de n1 maneras y una vez que este ha ocurrido, otro evento Bpuede n2 maneras diferentes entonces, el número total de formas diferentes en que ambos eventos pueden ocurrir en el orden indicado, es igual a  n1 x n2.
¿De cuántas maneras pueden repartirse 3 premios a un conjunto de 10 personas, suponiendo que cada persona no puede obtener más de un premio?
Aplicando el principio fundamental del conteo, tenemos 10 personas que pueden recibir el primer
premio. Una vez que éste ha sido entregado, restan 9 personas para recibir el segundo, y
posteriormente quedarán 8 personas para el tercer premio. De ahí que el número de maneras
distintas de repartir los tres premios.

n
10 x 9 x 8 = 720


¿Cuántas placas de automóvil se pueden hacer utilizando dos letras seguidas de tres cifras? No se
admiten repeticiones.

26 x 25 x 10 x 9 x 8 = 468000

n un número entero positivo, el producto n (n-1) (n-2)...3 x 2 x 1 se llama factorial de n.
El símbolo ! se lee factorial y es el producto resultante de todos los enteros positivos de 1 a n; es decir, sea 
n
5! = 5 x 4 x 3 x 2 x 1 = 120
Por definición 0! = 1

 Si el número de posibles resultados de un experimento es pequeño, es relativamente fácil listar y contar todos los posibles resultados. Al tirar un dado, por ejemplo, hay seis posibles resultados.

Si, sin embargo, hay un gran número de posibles resultados tales como el número de niños y niñas por familias con cinco hijos, sería tedioso listar y contar todas las posibilidades. Las posibilidades serían, 5 niños, 4 niños y 1 niña, 3 niños y 2 niñas, 2 niños y 3 niñas, etc.

 Para facilitar el conteo examinaremos tres técnicas:

* La técnica de la multiplicación
* La tecnica aditiva
* La tecnica de la suma o Adicion
* La técnica de la permutación
* La técnica de la combinación.


PRINCIPIO DE LA MULTIPLICACION

Si se desea realizar una actividad que consta de r pasos, en donde el primer paso de la actividad a realizar  puede ser llevado a cabo de N1 maneras o formas, el segundo paso de N2 maneras o formas y el r-ésimo paso de Nr maneras o formas, entonces esta actividad puede ser llevada a efecto de. El principio multiplicativo implica que cada uno de los pasos de la actividad deben ser llevados a efecto, uno tras otro. Si un evento E1 puede suceder de n1 maneras diferentes, el evento E2 puede ocurrir de n2 maneras diferentes, y así sucesivamente hasta el evento Ep el cual puede ocurrir de np maneras diferentes, entonces el total de maneras distintas en que puede suceder el evento “ocurren E1 y E2…..y Ep” es igual a producto.


 N1 x N2 x ..........x  Nr  maneras o formas
Ejemplo:
Se dispone de 3 vías para viajar de C1 a C2   y de 4 vías para viajar de C2 a C1. ¿De cuántas formas se puede organizar el viaje de ida y vuelta de C1 a C2.Respuesta: (3)(4)=12


PRINCIPIO ADITIVO.

Si se desea llevar a efecto una actividad, la cuál tiene formas alternativas para ser realizada, donde la primera de esas alternativas puede ser realizada de M maneras o formas, la segunda alternativa puede realizarse de N maneras o formas ..... y la última de las alternativas puede ser realizada de W maneras o formas, entonces esa actividad puede ser llevada  a cabo de,

                        M + N + .........+ W  maneras o formas

Ejemplos:
1)      Una persona desea comprar una lavadora de ropa, para lo cuál ha pensado que puede seleccionar de entre las marcas Whirpool, Easy y General Electric, cuando acude a hacer la compra se encuentra que la lavadora de la marca W se presenta en dos tipos de carga ( 8 u 11 kilogramos), en cuatro colores diferentes y puede ser automática o semiautomática, mientras que la lavadora de la marca E, se presenta en tres tipos de carga (8, 11 o 15 kilogramos), en dos colores diferentes y puede ser automática o semiautomática y la lavadora de la marca GE, se presenta en solo un tipo de carga, que es de 11 kilogramos, dos colores diferentes y solo hay semiautomática. ¿Cuántas maneras tiene esta persona de comprar una lavadora?


Solución:

M = Número de maneras de seleccionar una lavadora Whirpool
N = Número de maneras de seleccionar una lavadora de la marca Easy
W = Número de maneras de seleccionar una lavadora de la marca General Electric


      M = 2 x 4 x 2 = 16 maneras
N = 3 x 2 x 2 = 12 maneras

W = 1 x 2 x 1 = 2 maneras

 M + N + W = 16 + 12 + 2 = 30 maneras de seleccionar una lavadora


PRINCIPIO DE LA SUMA O ADICCION
Si una primera operación puede realizarse de m maneras y una segunda operación de n maneras, entonces una operación o la otra pueden efectuarse de:
                      m+n maneras.

Ejemplo:
Una pareja que se tiene que casar, junta dinero para el enganche de su casa, en el fraccionamiento lomas de la presa le ofrecen un modelo económico ó un condominio, en el fraccionamiento Playas le ofrecen un modelo económico como modelos un residencial, un californiano y un provenzal. ¿Cuántas alternativas diferentes de vivienda le ofrecen a la pareja?

PRESA                     PLAYAS
Económico             Residencial
Condominio           Californiano
                              Provenzal
   m=2                           n=3

           2+3= 5 maneras


PRINCIPIO DE PERMUTACION:

A diferencia de la formula de la multiplicación, se la utiliza para determinar el numero de posibles arreglos cuando solo hay un solo grupo de objetos. Permutación: un arreglos o posición de r objetos seleccionados de un solo grupo de n objetos posibles. Si nos damos cuenta los arreglos a, b, c y b, a, c son permutaciones diferentes, la formula que se utiliza para contar el numero total de permutaciones distintas es:
                                               
                                              FÓRMULA: n P r = n! (n - r)

Ejemplo: ¿Como se puede designar los cuatro primeros lugares de un concurso, donde existen 15 participantes?
 Aplicando la formula de la permutación tenemos:

                                                   
 n P r = n! (n - r)! = 15! = 15*14*13*12 *11*10*9*8*7*6*5*4*3*2*1 (15-4)! 11*10*9*8*7*6*5*4*3*2*1 = 32760

Donde: n= número total de objetos r= número de objetos seleccionados!= factorial, producto de los números naturales entre 1 y n.
NOTA: se puede cancelar números cuando se tiene las mismas cifras en numerador y denominador. !


PRINCIPIO DE COMBINACION:
En una permutación, el orden de los objetos de cada posible resultado es diferente. Si el orden de los objetos no es importante, cada uno de estos resultados se denomina combinación. Por ejemplo, si se quiere formar un equipo de trabajo formado por 2 personas seleccionadas de un grupo de tres (A, B y C). Si en el equipo hay dos funciones diferentes, entonces si importa el orden, los resultados serán permutaciones. Por el contrario si en el equipo no hay funciones definidas, entonces no importa el orden y los resultados serán combinaciones. Los resultados en ambos casos son los siguientes:
Permutaciones: AB, AC, BA, CA, BC, CB
Combinaciones: AB, AC, BC

Combinaciones: Es el número de formas de seleccionar r objetos de un grupo de n objetos sin importar el orden.
La fórmula de combinaciones es:

                                                          n C r = n!                          r! (n – r)!

Ejemplo: En una compañía se quiere establecer un código de colores para identificar cada una de las 42 partes de un producto. Se quiere marcar con 3 colores de un total de 7 cada una de las partes, de tal suerte que cada una tenga una combinación de 3 colores diferentes. ¿Será adecuado este código de colores para identificar las 42 partes del producto?
Usando la fórmula de combinaciones:
n C r = n! = 7! = 7! = 35
 r! (n – r )!  3! (7 – 3)!  3! 4!





No hay comentarios:

Publicar un comentario